Neck Strength and Concussion Risk


Neck muscles are historically one of the most unsexy muscles to train and develop in athletes. When we look at the main reasons that people take up training we find things like:

  1. Cosmetic (look better with less clothes)
  2. Enhanced performance in a specific sport
  3. Weight loss

The problem is that having a thick, strong neck is not seen as terribly sexy (especially for women) . A strong neck isn’t going to make professional scouts look at you closer on the football field, and certainly no one is asking you how much weight you can pull in neck extension.

In spite of these obstacles, there’s been a growing movement in sports science to pay more attention to the neck as a possible way to mitigate an athlete’s risk of concussion. Some circles are even hailing a strong neck as the only way to truly protect athletes from concussive head injuries. But what does the science say?

History of Neck Training

The buzz about strengthening the cervical spine came as a reaction to a 2014 study published in the Journal of Primary Prevention by Collins et al. [Source] The paper was on an observational study performed on over 6,000 high school athletes whose training staff assessed the strength of their necks and observed their risk of concussive injury over the course of a year.

The study found that people with smaller and weaker necks were at a higher risk of concussion during the school year. In fact, the defining sentence from the abstract shows why people were so excited about this study:

“For every one pound increase in neck strength, odds of concussion decreased by 5%” – Collins et al, 2014

The paper received a lot of buzz, and the idea of neck strengthening even became featured in a USA Today article featuring a colleague and renowned concussion expert Dr. Tad Seifert. [Source]

Truthfully, this is not a new concept to strength and conditioning coaches involved with boxing, mixed martial arts, and football. Neck exercises have been a staple in boxing for decades because stronger necks allowed fighters to take a harder punch. Just take a look at how Floyd Mayweather trains his neck.

A number of NFL teams became early adopters of weekly neck exercises to prepare their athletes for the inevitable high speed collisions that occur in football regularly. [Source]

How Does A Strong Neck Protect Your Brain?

A lot of the ideas about neck size and strength is related to the basic physics of acceleration.

Contrary to popular belief, a concussion is not simply a matter of taking a large blow to the head. Classically a concussion is seen through the lens of a coup/countercoup injury mechanism. An object strikes the skull, the skull hits the brain, and the brain hits the opposite side of the skull.

Classically brain injury is thought in terms of the brain colliding against the skull.

Classically brain injury is thought in terms of the brain colliding against the skull.

Much of the damage done to the brain and nervous system actually have a lot to do with acceleration and deceleration. This rapid acceleration and deceleration inside the head will cause a shearing force into the central structures of the brain including the midbrain, brain stem, and diencephalon.

The sudden deceleration in a concussion leads to tearing of the axons in the central portion of the brain.

The sudden deceleration in a concussion leads to tearing of the axons in the central portion of the brain.

That’s where a thicker and stronger neck may make a difference. Bigger and stronger neck muscles are capable of absorbing more force from an impact. That means that a strong and robust muscular system can take on that energy as opposed to letting the force go into the spinal ligaments and neural structures. If the amount of force of an impact is equal, then a bigger and stronger neck will be harder to accelerate which means decreased movement of the brain, and decreased shear into the central brain structures.


Do Neck Strengthening Programs Help?

As of now, we know that bigger and stronger necks are correlated with a reduction in concussion and this seems to make good sense. It helps to explain why girls have a higher rate of concussion than boys when playing equivalent sports like soccer [Source].

So here are the million dollar question:

Will neck strengthening reduce the incidence of concussion?

In other words; does someone who is naturally bigger and more muscular have a higher resistance to concussion, or can we train the neck to be more resilient?

In regards to concussion, we don’t really know the answer to that yet. There hasn’t been a study that compared groups of people who train their necks and how it impacts concussion rates….at least not yet.

We can make some educated guesses based on what’s been published in the literature about neck exercise and head stability, and neck exercise and general injuries.

The studies that looked at training programs and head acceleration don’t appear to be optimistic. Mansell et al looked at college soccer players using an 8 week neck training program found that training did not reduce head acceleration from a soccer ball header. Nor did it affect displacement, or EMG activity even though strength levels went up.[Source] Lisman et al found a similar result in trained college men during a football tackle. Although the men showed increased strength, there was no detectable difference in acceleration, displacement, or EMG activity. [Source – Lisman Paper]

Schmidt et al found that increasing stiffness of the neck does reduce rotational acceleration of the head, but parodoxically found that those with stronger and larger necks did not protect from higher impacts. [Source]

Most of the critiques of that study are that it tested stabilization in an unreliable way within a laboratory setting. Could results of players in a real setting dispute the acceleration data?

The data is pretty limited there, but a study of professional rugby players found that neck injuries did go down from one season to the next after the team participated in a 26 week neck training program. [Source] The rugby team focused mainly on isometric exercise which may mean more for an athlete because it is the neck’s ability to produce stiffness and stop motion that will help reduce the acceleration injury.

Thoughts on Neck Strengthening Programs

Thanks in part to the Collins study, there has been a greater effort to meet the demands of people wanting a way to prevent concussion by doing neck exercises. The list of contraptions that have hit the market that say they can prevent concussion is sometimes staggering.

Before you buy a fancy contraption for neck strength, we have to remember that neck muscles are like any other muscles in the body. If you repeatedly make them work against resistance, they will get stronger and be able to generate stiffness.

Some strength and conditioning coaches have advocated the idea that basic strength training alone will generate enough neck contraction without specific neck exercise, but this was disputed in a study by Conley in 1997. [Source] The study found that heavy compound lifts alone came up far short in terms of strength and hypertrophy than a program that included a neck specific exercise.

A review of published studies on different neck exercise programs showed that all kinds of neck exercises targeting the neck could produce measurable strength gains. These include isometric exercise, banded resistance, neck specific machine exercise, and even exercises against a coach’s manual resistance. [Source]

Ultimately, your neck is more likely to put on mass if you use a program that involves a neck harness with free weights or a machine with the ability to increase the resisted load. However, these studies have shown that subjects can make sizable strength gains within 8-12 weeks time by doing banded isometrics or using manual resistance even without hypertrophy.

In the end, you don’t need fancy equipment to get a strong neck. Just just need to do the work.

If you want a great guide for a wide range of neck exercises with video explanations, you probably won’t find a better resource then this article on Bret Contreras’ blog:

 My Take

As it stands today, we don’t truly know if you can truly reduce your odds of concussion through neck exercises, or if you just need to be born with the genes to have a big/thick neck. The good news is that anyone can do basic neck exercises on a regular basis for minimum investment and no real downside.

If you are an athlete that is in a high level combat or contact sport, it’s likely that you are already engaging in some form of neck training. For these athletes, it’s important to get your neck strong, but the truth is that there is probably a point of diminishing returns. Why? Because no amount of neck strength is likely to protect you from having a concussion after a hit like this:


No amount of neck strength is likely to stop this type of concussion.

No amount of neck strength is likely to stop this type of concussion.


Perhaps the biggest beneficiaries of a neck training program isn’t for professional athletes. It’s most likely to benefit our youth athletes and female athletes! The concussion rates in youth or female athletics may be a product of having a smaller or weaker neck. Many of the collisions in these sports are often a result of incidental contact, and are not as severe as those in tackle football, yet concussions happen more frequently.

Here are some other observations that aren’t proven yet by research, but I believe will play a role as we start to understand more.

  1. Proprioception may play just as important a role in susceptibility to concussion as strength. Exercises and treatments that focus on joint position sense proprioceptive stimulation seem to be helpful in rehabbing patients with concussion symptoms.Just like balance and proprioceptive exercises can help athletes mitigate ankle and knee injuries, I think these types of exercises may help the neck become a little more resilient to sprain/strain injuries.
  2. Isometric exercise may be more important than concentric exercise. Since we are talking about stopping acceleration of the head and neck, we want the neck to develop stiffness in response to an applied force.While taking a neck movement through full range with hundreds of pounds may be cool to some (unlikely), by making your neck resist moving against an applied force has a more realistic application than doing heavy neck curls.
  3. Don’t play a sport with a sore neck. If you are going to train your neck, do most of the training in the off season and do maintenance exercise programs during the season.Starting a program of neck exercises can and make your neck sore. Sore necks are not great at turning and avoiding danger. Sore necks are also more likely to instigate a headache/pain process for a short term. You don’t want that short term period to happen when you’re playing in a game for real.




2 replies
  1. Martin Schulz
    Martin Schulz says:

    I’m a professional soccer coach and concussions are, unfortunately, an all too common feature of our game. This was a really interesting read and I’m glad that other people are taking concussions seriously, as I know from personal experience how damaging it can be.

    I’m going to focus some training drills for my players over the next few weeks on neck excercises as well, as particularly for our defenders this will help with their game!


    • Dr. Jon Chung
      Dr. Jon Chung says:

      Thanks for the feedback Martin. It’s a really important issue and neck training is too easy and safe to ignore!



Trackbacks & Pingbacks

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *